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Abstract 

It Is often necessary to predict the reliability of a system when 

only the mean lifetimes of its components are known.    Then it is usually 

assumed that each component has a constant failure rate (equal to the 

reciprocal of its mean lifetime)  and that component failures occur 

Independently.    It is  customary' to express the prediction in  terms 

of some constant  failure rate for the system.    Questions arise as  to when 

this procedure is precise,  and if it is not precise, what constant values 

for the system failure  rate give reasonable approximations for the actual 

system failure rate  function. 

In this paper these questions are answered in the case that com- 

ponents (a)   fail independently and  (b) have constant failure rates.    Then 

It Is well known that  the  failure rate of a series system is  constant and 

equal to the sum of the component failure rates.    When (a) and (b)  hold, 

the system failure rate can he constant only for a series system.    For 

other than series systems approximate constant failure rates should be 

chosen to lie beMeen tuo bounds that can be computed from the component 

failure rates,   (The lower bound is the sum of  the component failure rates 

for those components  that can cause system failure by their single» isolated 

failure.    The upper bound is the smallest sum of component failure rates  that 

can be obtained for any set of components  that can Insure the functioning of 

the system by all  functioning.)    For such choices the predicted system 

reliabilitu will be accurate for a mission of some particular duration, 

smaller than the actual system reliability for shorter missionst and larger 

than the actual system reliability for longer missions.    For any other choice 

the prediction will always be too large  or too small. 
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1.      Introduction 

It Is a familiar practice to convert a given, or estimated,  mean 

lifetime (mean time  to failure)  for a device into a reliability predic- 

tlon by assuming that its lifetime has an exponential distribution, 

i.e., 

I 
(1.1) If   T t 0    is the random lifetime of a device, 

and   m - E(T)    is its mean lifetimet  then its 
i 

reliability    P[T>t]   for a mission of duration 
I 

t   is approximated by 

P[T>t] - e      ,    t > 0, ■ 

Where    X ■ 1/m. 

The procedure described in (1.1)  is equivalent  to assuming that  the 

device has a constant hazard (failure)   rate    X ■  1/m. 

When the mean lifetimes of components are used to predict  the 

reliability of the system,  it is also customary  to express  the predic- 

tion in terms of a mean lifetime for the system with the understanding 

that (1.1) will be used to approximate reliabilities.    It is also usual 

in arriving at the prediction to assume  that components fail independently, 

The practices mentioned above raise  the  following questions: 

Assuming that the lifetimes of components are statistically independent 

and have exponential distributions,  then: 

(1.2) For what systems does the system lifetime actually 
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T! 

have an exponential dietributionl 

(1.3) For a system whose lifetime is not exponentially dis~ 

tributedt which exponential distributions give 

reasonable approximations to the actual system life- 

time distributionl 

Part of the answer to Question  (1.2)   is very well known.     If the 

lifetimes of the components In a series  system (i.e.,  a system that 

falls with Its  first component  failure)  have exponential distributions, 

then the system lifetime has an exponential  distribution.    We show  that 

only series systems have  this property. 

It Is also known that if the lifetimes of the components  in a 

coherent system have exponential distributions,  then the system lifetime 

has an  Increasing hi/.ard  (failufc)   rate  average  (IHRA)   distribution 

[Birnbaum, Esary,  and Marshall,  196b].    We answer Question  (1.3)  by 

exhibiting an  Interval   In which  an  approximate,   constant  system  failure 

rate must lie If the corresponding approximate, exponential distribution 

for the system lifetime is to give  the same reliability prediction as 

the actual IHRA distribution,  at  least   for a mission of some duration    t. 

Notation.       We use   the stcindard  vector notation    a ■  (a, a ), 

ca c ac «  (ca. ,... ,ca ),    and the special  convention    e ^ «  (e     i, • • • »e    n), 
***     A* in 

2.      The Hazard Transform of a Coherent System 

The struotuv, funzt'm  i(x  ,...,x )     describes the organization of 

a system;    x.     Indicates  the state of  the  l**1 component, with    x.  ■  1 

If the component is  functioning and    x    » 0    If the component  is  failed, 



rr vmmmmmmmmmmmmmmmmammmmmmmmmm 

-3- 

and    ^    Indicates the corresponding state of  the system, with    ^(x)  m 1 

If the system Is functioning and    4i(x)  " 0    If the system is  failed.    A 

system Is adherent If Its structure function Is Increasing in each of its 

arguments and is not constant in any of its  arguments. 

The reliability function   h(p  ,...,p )    is defined by 

(2.1) h(p) - PUCX. X)  -  1] 
*w in 

0  < pi < 1,    1 « l,...,n, 

where    X, X      are independent Bernoulli  random variables with 

P[X.«1] ■ p.,    and    ())    Is the structure  function of the system. 

The hazard transform   n(p,,...,p  )    is defined by 

(2.2) -Pi -Pi nC^) - -log h(e K1 e Kn), 

Pi > 0,    1 - 1 n, 

where    h    is  the reliability function of the system. 

In this paper a special role is played by the aeries system for 

which too - TTiUxv ^ ■ TTi^Pi. «d n(p) - Timl9V 

In the context of Questions  (1.2)  and (1.3)  the components in a 

coherent system are assumed to have independent random lifetimes    T^ T . 

Let   T   be the corresponding random lifetime  for the system.    Then It 

follows from (2.1)  that 

(2.3) P(T>t) - hjPlT^t] PlTn>tl},    t I 0, 
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by choosing the Bernoulli random variables so that    X.  «  1 <=> T.  >  t, 

1 ■ 1 n,    and noting that    T >  t  <»> ((i(X)  « 1.      If 

R(t) - -log P[T>t],  t > 0, i.e.,    P[T>t] - e"R(t),    and    R^t)  - -log P[Ti>t], 

tiO,    i-l,...,n,    then it follows  from (2.3)  and  (2.2)   that 

(2.4) R(t) - niR^t) \^}»   t - öc 

R   is the hazard function of the  random lifetime    T    and    R, R in 

are the hazard functions of   T ,...,T .      The hazard trans form of a coherent 

oyatem expreaaes the hazard function of the ayatem lifetime in terms of 

the hazard funotiona of the component lifetimes. 

For our purposes  the hazard  transform is a useful description of a 

coherent system.    If the component  lifetimes have exponential distribu- 

tions,  i.e.,    P[T.>t] ■ e        ,  t * 0,     then their hazard  functions are 

R.(t)  ■ X.t,    i ^  1 n.      Then  (2.4)  becomes 

(2.5) R(t) - n(X1t,...,Xnt),    t > 0, 

I.e., questions such as (1.2)  and (1.3)  reduce to studies of the behavior 

of the hazard transform on rays    {Xt,t^0|    in its domain. 

In what follows we will need certain properties of the hazard 

transform of a coherent system: 

(2.6) n(0 0) - 0,   and   n(pi p^)  > o   whenever    p    > 0, 1 - l,...,n. 

(2.7) n    *• inoreaaing in each of its arguments. 

(2.8) n    i» etarehaped, i.e.,    n(ap)  < an(p)    for all   p    and all   0 i a i 1, 
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(2.9)        If   n(ap) • an(p)    for some    p    such that    p.  > 0, 

1 ■ I,...,!!,    and some    0 < a < 1,   then the system 

is a series system. 

The first  two properties above are equivalent  to familiar elementary 

properties of the structure and reliability functions of coherent systems, 

Property (2.8)   comes from an inequality for the reliability function 

obtained by Birnbaum, Esary,  and Marshall (1966, Theorem 2.1).    The 

details of the translations of properties  (2.6)  through  (2.8)  into 

hazard terminology and the proof of property (2.9)  are given in Esary, 

Marshall,  and Proschan (1969). 

Other examples of coherent systems are given in Birnbaum, Esary, 

and Saunders  (1961)  and Barlow and Proschan (1965). 

3.      Exponential System Lifetimes 

If the components In a series system have Independent, exponentially 

distributed lifetimes, then it is easy to confirm the well-known fact 

that the system lifetime is exponentially distributed.    From (2.5)  and 

the definition of a series system 

(3.1) w- ij-i v- (H-ihY* '-o» 
where    R    is  the system hazard function and    A. A      are the component 

hazard rates, I.e.,    R   is the hazard function of an exponential distribution. 

For the remainder of this paper we will explicitly assume that the 

hazard rate of an exponentially distributed lifetime is not zero. With 

this assumption the ray    {At,t*0}    determined by the hazard functions of 

■i 

a 
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a set of exponentially distributed component lifetimes is  an interior 

Toy t I.e.,     X.   >0,    1=  1,...^.       (We have already tacitly assumed that 

exponential hazard rates are  finite,  e.g.,  in writing (2.5)  when the 

hazard transform is defined for finite arguments.) 

The rest of the answer to question  (1.2)  is   then contained in the 

following proposition: 

(3.2)    Proposition.      Suppose that the lifetimes of the components in 

a coherent system are independent and exponentially distributed.    If the 

System lifetime is exponentially distributed,  then the system is a series 

ays tern. 

Proof.       If the system lifetime is exponentially distributed,  then 

R(t)  «Wt,   t 2 0,     for some     u > 0,    where    R    is  the hazard  function of 

the system lifetime.    Then  (2.5)  becomes    n{H} «  ut,   t ^ 0,    where    n 

is  the hazard transform of the system and    A.  > 0,  1 = l,...,n,    are the 

component hazard rates.    Consider some    t > 0    and some    0  <  a < 1. 

Let    p. • X t,    i « l,...,n.      Then    n(a^)  ■ n(aU)  - nfx/at)}  «= u(at) 

• a(Mt)  - an(Xt) ■ ari(p).      Since    p.   > 0,    1 « l,...,n,    the system must 

be a series system by property (2.9).     |j 

4.       Initial and Terminal System Hazard Rates 

When the components in a coin rent system have independent, exponen- 

tially distributed lifetimes, it follows from (2.5) that the hazard rate 

at  time    t, R'U) ■ dR(t)/dt>    for the system lifetime is given by 

(4.1) R'tt) - n'Ujt Xnt),    t > 0, 
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where    n'Cj^t)  ■ dn(X<t)/dt,    n    is  the hazard  transform of the system, 

R    is  the system hazard function,  and    X   X      are  the component 

hazard rates.    For a non-series system,    R   is not the hazard function of 

an exponential distribution by Proposition 3.2,  so that    R1    is not a 

constant function of    t.    In Section 5 it is shown that any constant 

approximation to    R'    should  lie between    R'CO)    and    lim      R'Ct), 

This section Is devoted to deriving convenient expressions  for these 

bounds. 

The I"1 component  in a coherent system Is  a out of the system if 

its  failure is sufficient  to cause  the failure of the system, i.e., if 

x, ■= 0    implies    4i(x)  • 0    where    $    is the structure function of the 

system.    The derivation which  follows shows that on a ray    {xt,t>0} 

(4.2) n'CXO) -   SieK \, 

where K is the set of all components that are cuts of the system. 

We say that ^n * ^"i K ^i is the initial hazard rate  for the system 

on the ray since from (4.1)  R^O) = \iQ. 

A set of components P in a coherent system is a path set  if the 

functioning of each component in P insures the functioning of the 

system, i.e., if x. - 1 for all i e P implies (|((x) - 1.  The 

derivation which follows shows that on an interior ray {xt.t^O} 

1 <A-3> "«W^xt) - vm> 

where 
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y«, " min{Siepx
i5    P    is a path set|. 

We say that    y^    is  the terminal hazard rate for the system on the ray 

since  from (4.1)     liin      Il'd:)  =  v  .      The same derivation shows  that 

(4.4) ""V^cc^Q^l = lo8 r. 

where r is the number of path sets P for which  ^\ „X 
^ieP i 

For a series system,    u0 «= y^ =  l^.A    froni (3.1).    The s a me 

conclusion can be obtained directly from the definitions  of    p.    and 

U^    since on  the one hand each  component in a series system Is  a cut  of 

the system and on the other hand there is only one path set for a series 

system,  I.e.,   the set of all   components.    For a non-series system   Kc P 

for any path set    P,    and furthermore    K. f ?.    Thus for a non-series 

system and an interior ray,    MQ < u^. 

The remainder of this section consists  of a derivation  to confirm 

(4.2),   (4.3),  and (4.4). 

From (2.3) 

(4.5) 

where    h'te — ) 

the system. 

n'at)-^^.   t>o. 
h(e ~ ) 

dh(e ~)/dt    and   h    is the  reliability function of 

From (2.1),    h(p) » EU(X)},    SO that 

(4.6) h(e"^t) -   1    <Kx)P(x,A,t),    t > 0, 
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where    (f    is the structure  function of the system, 

(4.7) P(£.X.O -TTlEC „e-^TTeC M^''^. 
1 ^ 0 •*» 

and    C.(x) = {i:x =l},    C  (x)  - {i:x-0}.    From (A.6) 

(A.8) h'Ce"^) -   2 iOOP'U.X.t),    t > 0, 
ma 

where    P'(x,X,t) - dP(x,X,t)/dt.    From (A.7) 

(A.9) P'Cx.A.t)  --^        xJpCx.X.t) 
1 »- 

+   IieCn(x)XiPi(1i^.t}, 

where     (l^.x)  -  (x1 xi_1 ,l,xi+1,... ,xn) . 

From (4.7) 

(A.io) p(x,x,o) >= j "u~r~ ~'~, 0    otherwise, 

where    1 ■ (1,...,!).      Then from (4.9)   and  (A.10) 

y" .X,    if    x - 1 

(A.11) P'tx.X.O)  = X.     if    x-(0,,l),    i-1 n, 

0    otherwise, 

where    (0.,x)  ■ (x  ,...,x.   . ,0,x.,,,...,x ).       Then from (A.6)   and i ^ i i-ii+i n 

(A.10) 

(A.12) h(e"^0)  - ^(1) - 1, 

and from (4.8)   and  (A.11) 

' ' •* -v .* . .-W. ,*♦«* 
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(A.13) h'(e-^)   = -$(1) ll^ +   1*^(0^1)^ 

V 
ieKXi" 

Then  (4.2)   follws   from  (A.5),   (4.12),  and  (4.13) 

Let    y(x,X)  =   ^ .  „  ,  ^ •       From (4.7) with    X    > 0,    i = 1 n, 
->'~ ^-leCj^)   i 1 

(4.14) lini 
o   if   u < yU,^). 

-w» -ut 
e 

Then from (4.9)   and  (4.14) 

(4.15) lim 
'(*.*, 0       ^    if    ^ =  ^'ti HJJL 

t-K" - U t 
e 0    if    y < u(x.^) 

Then from (4.6)   and  (4.14) 

(4.16) lim 
h(c"At)       v                          PU^.t) 
  «=    >   A(X)   lim.,        r«Ä*- 

^{x^C^-1»^^"^) 
1 - r. 

Similarly from (4.8)   and   (4.15) 

hVe"^) 
(4.17) Urn        "   v~       '   B Ty 

Then  (4.3)   follows   from  (4.5),   (4.16),  and  (4.17),  since 

lim^    n'CxO   =  lim 
t-x» 

-h,(e"^t)/e"y°°t 

t-x»    . /   -Xtv  .   -Moot h(e -' )/e 

ry. 
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From (2.2) 

h(e~ ) 
nCA^ " »<** m -l08  • -UoBt    • 

e 

so  that  (4.A)   follows   from  (4.16). 

5.       Exponential Approximations  for System Lifetimes 

If the components  in a coherent system have independent, exponen- 

tially distributed  lifetimes,   then from (3.1)   and Proposition  (3.2)   the 

system lifetime is exponentially distributed if and  only if the system 

Is  a series system.    Question (1.3)  asks what exponential distributions 

are  reasonable approximat ions  to the actual distribution of the system 

lifetime when  the system is not  a series system.    The answer to Question 

(1.3)   is contained in  the  following proposition: 

5.1    Proposition.      Let    R   be the hazard function of the lifetime of a 

coherent systcn that is not a series system.    Suppose  that the component 

lifetimes are independent and exponentially distributed with hazard rates 

X.  > 0,    i « 1 n.      Let    u     be the initial hazard rate for the 

system on the ray    {xt,t^0}    and   \im   be the terminal hazard rate on 

ike ray.    Then: 

(i)    If   u0 < u < y^,    there exists a    t    > 0 such that 

R(t ) » ut  .      Also    R(t)  < ut    if   0 < t < t      and 

R(t)  > ut    if    t > t . 

(ii)    y-t < R(t)  < y^t    for all      t > 0. 

Proof.      From (2.5),    R(t)  = n(U),    t * 0,    where    n    is  the hazard 
■ ■   ■ ^ 
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transform of  the systrra.     Since the  system is not   a series system, 

0 5 y«  <  p       [cf.  Section  4]. 
U oo 

(i) From (A.2)  n'^O) = \i      and from (4.4)  n(U)  Is asymptotic 

to the straight line u t - log r as t ■* *.      Thus if 

y,, < U < p ,  then there is a t > 0 such that 
0      »' \i 

n(\t ) = ut . Since the system is not a series system 

and X. > 0,  i = 1 n, it follows from properties 

(2,8) and (2.9) that n is strictly starshaped on the 

ray {Xt.t^o}, i.e., njUat)} < an(U)  for all 

t > 0 and all 0 < a ^ 1.  Suppose 0 < t < t  and 
U 

let    a =  t/t   .       Then    0  <  a <  1    and    n(Xt)  = n{A(at )} 

< an(U  )   =  ant    » yt.       Similarly  if    t >  t  ,     then 

n(xt) > ut. 

(ii)    This  conclusion can be proved by  arguments similar to those 

used  for part  (i), but is  also immediate  from the defini- 

tions of    u0     and    u^.     Q 

Proposition  (5.1)   is  illustrated  for  two simple systems  in Figure 

1. 

Recall that the hazard function    R    of  the system lifetime    T    is 

related to  the  reliability of the system for a mission of duration    t 

-R(t) 
by    P[T>t] » e ,    and that using an exponential distribution for    T 

with hazard  rate    u  > 0    leads  to  the approximation    P[T>t] ^ e       , 

Part (1)  of Proposition (5.1) says that if   uQ  < y < y^   cm exponential 

approximation gives  the oovreat reliability for a miesion of some 

MMaii^^M 
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4      19 2 3 

<>=1-[{(1-X))|1-X2)((1-X3) 
flo=0. /'a)=.5, r=2 
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H9 

20 

12 3 4 
S'.= x1[l-)(l-x2)(l-x3))] 
flo=l /'oo=-6,  r=2 

Figure 1.       System hazard functions when components 
have constant  failure rates. 
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